Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình 16 x - m . 4 x - 1 + 5 m 2 - 44 = 0 có hai nghiệm đối nhau. Hỏi S có bao nhiêu phần tử?
A.2
B.0
C.1
D.3
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình 2 + 3 x - m 2 - 3 x = 10 có 2 nghiệm dương phân biệt. Số phần tử của S bằng
A. 12
B. 15
C. 9
D. 4
Cho phương trình log 2 2 x - 4 log 2 x - m 2 - 2 m + 3 = 0 .
Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt x 1 , x 2 thỏa mãn x 1 2 + x 2 2 = 68 . Tính tổng các phần tử của S
A. -1
B. -2
C. 1
D. 2
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn [-10;10] để bất phương trình log 3 2 x 2 + x + m + 1 x 2 + x + 1 ≥ 2 x 2 + 4 x + 5 - 2 m có nghiệm. Số phần tử của tập hợp S bằng
A. 20
B. 10
C. 15
D. 5
Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây. Gọi S là tập hợp tất cả các giá trị của tham số m để phương trình f ( 3 - 4 - x 2 ) = m có hai nghiệm phân biệt thuộc đoạn - 2 ; 3 . Tìm tập S.
A. S = ( - 1 ; f 3 - 2 ]
B. S = ( f 3 - 2 ; 3 ]
C. S = ○
D. S = [-1;3]
Cho phương trình ( m - 5 ) . 3 x + ( 2 m - 2 ) . 2 x . 3 x + ( 1 - m ) . 4 x = 0 , tập hợp tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt là khoảng (a;b). Tính S=a+b
A.4
B.5
C.6
D.8
Gọi S là tập tất cả các giá trị nguyên của tham số m với m < 64 để phương trình log 1 5 x + m + log 5 2 - x = 0 có nghiệm. Tính tổng tất cả các phần tử của S .
A. 2018
B. 2016
C. 2015
D. 2013
Cho phương trình (m+1)sinx + mcosx = 2m-1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình có nghiệm. Tính tổng tất cả các phần tử của S.