Cho hình lăng trụ đứng có AB = a, AC = 2a, A A 1 = 2 a 5 và B A C ^ = 120 0 . Gọi K, I lần lượt là trung điểm của các cạnh C C 1 , B B 1 . Khoảng cách từ điểm I đến mặt phẳng A 1 B K bằng
Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;1;9). Gọi (P) là mặt phẳng đi qua M và cắt 3 tia Ox, Oy, Oz lần lượt tại các điểm A,B,C (khác 0) sao cho (OA+OB+OC) đạt giá trị nhỏ nhất. Tính khoảng cách d từ điểm I(0;1;3) đến mặt phẳng (P).
A. d= 34 5
B. d= 36 5
C. d= 24 7
D. d= 30 7
Trong không gian Oxyz cho mặt phẳng (P): 2x-y+2z-14=0 và mặt cầu (S): x 2 + y 2 + z 2 - 2 x + 4 y + 2 z - 3 = 0 . Gọi tọa độ điểm M(a;b;c) thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Tính giá trị biểu thức K=a+b+c
A. K=1
B. K=2
C. K=-5
D. K=-2
Cho hình lăng trụ đứng ABC.A’B’C’ có A B = 1 , A C = 2 , A A ' = 3 và B A C ⏜ = 120 0 . Gọi M, N lần lượt là các điểm trên cạnh BB’, CC’ sao cho BM=3B'M; CN=2C'N. Tính khoảng cách từ điểm M đến mặt phẳng (A'BN).
Trong không gian Oxyz cho điểm M (2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I (1;2;3) đến mặt phẳng (P)
A . 17 30 30
B . 13 30 30
C . 19 30 30
D . 11 30 30
Trong không gian Oxyz cho điểm M(2;1;5) Mặt phẳng (P) đi qua điểm M và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P)
A. 17 30 30
B. 13 30 30
C. 19 30 30
D. 11 30 30
Cho hình chóp S.ABC, đáy ABC là tam
giác đều cạnh a; SA ⊥ (ABC). Gọi H, K
lần lượt là hình chiếu vuông góc của A
lên SB; SC. Diện tích mặt cầu đi qua 5
điểm A, B, C, K, H là
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Cho khối lập phương ABCD.A'B'C'D' cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Mặt phẳng (MB'D'N) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A. Thể tích của khối đa diện (H) bằng:
A. a 3 9 B. a 3 6
C. a 3 4 D. 7 a 3 24