Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng:
a) HA + HB + HC < AB + AC
b) HA + HB + HC < \(\dfrac{2}{3}\) (AB + BC + CA)
Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng:
a) HA + HB + HC < AB + AC
b) HA + HB + HC <\(\frac{2}{3}\)(AB + BC + CA )
Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng HA + HB + HC < 2/3 (AB + AC + BC).
=
gọi H là trực tâm của tam giác nhọn ABC. Chứng minh: HA+HB+HC<2/3(AB+AC+BC)
Gọi H là trực tâm của tam giác ABC nhọn. Cm rằng:
HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)
Gọi H là trực tâm của tam giácABC nhọn .Chứng minh rằng :
HA+HB+HC < 2/3 (AB+BC+CA)
gọi H là trực tâm của tam giác ABC. chứng minh rằng:
a. HA+HB+HC<AB+AC
b. HA+HB+HC<\(\frac{2}{3}\)(AB+BC+AC)
Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng: \(HA+HB+HC<\frac{2}{3}\left(AB+AC+BC\right)\)
gọi H là trực tâm của tam giác ABC. chứng minh rằng:
a. HA+HB+HC<AB+AC
b. HA+HB+HC<23 (AB+BC+AC)