C/m \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
+) Từ giải thiết suy ra : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)( Vì a + b + c > 0 )
+) Biến đổi được kết quả : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)Tam giác đó là tam giác đề ( đpcm 0
Vậy tam giác đó là tam giác đều
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a,b,c\)là độ dài 3 cạnh của tam giác nên \(a+b+c=0\)
\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2-\left(c-a\right)^2=0\) (mk lm tắt nhé)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow\)\(a=b=c\)
Vậy tam giác đó là tam giác đều
mk nhầm chút nhé
Vì a,b,c là độ dài các cạnh của tam giác nên \(a+b+c\ne0\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Mà a,b,c là độ dài 3 cạnh tam giác \(\Rightarrow a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
=> Tam giác đều
a3+b3+c3 =3abc
a3+b3+c3-3abc =0
(a+b)3+c3-3abc =0
a3+b3+c3+3a2b+3ab2-3abc =0
a3+b3+c3+3ab(a+b)-3abc =0
(a+b+c)[(a+b)2-c(a+b)+c2-3ab(a+b+c) =0
(a+b+c)(a2+b2+c2-ab-bc-ca) =0
=> \(\orbr{\begin{cases}a+b+c=0\\a2+b2+c2-ab-bc-ca=0\end{cases}}\)
=> \(\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2-\left(b-c\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
=>a=b=c
vì a,b,c là cạnh của tam giác ABC (đề ra)
=> tam giác ABC đều