Cho tam giác ABC vuông tại A có trung tuyến BM. Trên tia đối tia MB lấy ME=MB
a)Chứng minh tam giác ABM = tam giác CEM
b)Chứng minh CE vuông góc AC
c) So sánh góc ABM và góc MBC
d)Cho AB= 6cm,AC=8cm. Tính khoảng cách từ A đến trọng tâm tam giác ABC
Cho tam giác ABC vuông tại A. Trên tia đối tia AB lấy điểm D sao cho AD = AB .
a. Cho biết AB = 6cm và BC = 10cm. Tính AC và so sánh góc B và góc C.
b. Chứng minh tam giác BCD cân.
c. Gọi M là trung điểm CD. BM cắt CA tại G. Tính AG, BG.
Cho tam giác ABC vuông tại A: AB=8cm:AC=6cm.
A) Tính BC ; So sánh các góc của tam giác ABC
B) Vẽ trung tuyến BM . Trên tia đối của tia MB lấy điểm D sao cho MB=MD.Chứng minh: tam giác ABM= tam giác CDM; từ đó suy ra tam giác MCD vuông
C) Chứng minh DAC > BAD
bài 1 cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh AC. trên tia đối của tia MB lấy điểmD sao cho MB=MD
a , chứng minh tam giác ABM=tam giác CDM
b,chứng minh góc MCD = 90 độ. từ đó chứng minh AC vuông góc với CD
Cho tam giác ABC vuông tại A ( AB < AC ) , BM là đường trung tuyến của tam giác ABC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB.
a) Cho biết AC = 8cm , BC = 10cm. Tính AB
b) Chứng minh AB = CD, AC vuông góc CD
c) Chứng minh AB + BC > 2BM
d) Chứng minh góc CBM < góc ABM
Cho tam giác ABC vuông tại A ( AB < AC ) , BM là đường trung tuyến của tam giác ABC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB.
a) Cho biết AC = 8cm , BC = 10cm. Tính AB
b) Chứng minh AB = CD, AC vuông góc CD
c) Chứng minh AB + BC > 2BM
d) Chứng minh góc CBM < góc ABM
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:
a) Tam giác ABC cân ở A
b) O là trọng tâm của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:
a) Góc CEB= góc ADC và Góc EBH= góc ACD
b) BE vuông góc BC
C) DF song song BE
Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK
a) Tính AB
b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông
c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK
d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK
Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm
a) Tính AC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE
d) Chứng minh: BE vuông góc với FC
Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng:
a) Góc AMB < góc AMC
b) Góc MAB > góc CAM
c) Góc ADB < góc ADC
d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
a) BC > CE; CE ⊥ AC
b) Góc ABM > góc MBC