Cho x, y, z là các số thực dương thoả mãn xy + yz + xz = 1. Chứng minh
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
Cho các số x,y,z thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng:
\(\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\le2\)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\frac{1}{16}\)
Cho các số thực không âm thỏa mãn x+y+z=3 và xy+yz+zx≠0
Chứng minh rằng \(\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\le\frac{25}{3\sqrt[3]{4xy+yz+zx}}\)
Cho 3 số thực x, y, z thỏa mãn: \(x+y+z\le\frac{3}{2}\). Tìm Min \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
1) Cho A=xy(x+y) + yz(y+z) + zx(z+x) +2xyz với x,y,z là các số nguyên lẻ.
Chứng minh A chia hết cho 8
2) Cho A = a+b+c và B = a3 + (b+2020)3 + (c+2021)3 với a,b,c là các số nguyên. Chứng minh A chia hết cho 3 khi và chỉ khi B chia hết cho 3
3) Cho các số thực x,y,z thảo mãn \(0\le x,y,z\le1\). Chứng minh rằng :
\(\frac{x}{1+x+yz}+\frac{y}{1+y+xz}+\frac{z}{1+z+xy}\le\frac{3}{x+y+z}\)
cho x,y,z là các số thực dương thỏa mãn: xy+yz+xz=xyz(x+y+z)
chứng minh rằng: \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}>=2\)
Cho x,y,z là ba số không âm thỏa mãn x+y+z=1
Chứng minh rằng: xy+yz+xz\(\le\frac{2}{7}+\frac{9xyz}{7}\)