Với số nguyên tố \(p\)bất kì, xét dãy số: \(2,22,...,222...22\)(\(p+1\)chữ số \(2\)).
Dãy số đó có \(p+1\)số hạng, do đó theo nguyên lí Dirichlet có ít nhất hai số trong dãy số có cùng số dư khi chia cho \(p\).
Giả sử đó là số \(a=22...22\)(\(k\)chữ số \(2\)) và \(b=222...22\)(\(l\)chữ số \(2\)) với \(l>k\ge1\).
Khi đó số \(b-a=22...200...0\)sẽ chia hết cho \(p\).
Ta có đpcm.