\(\left(x^3+y^3+z^3\right)-x^3-y^3-z^3=0.\)
Phá ngoặc ra , rồi triệt tiêu như vậy nèk :
( x3 + y3 + z3 ) - x3 - y3 - z3
= x3 + y3 + z3 - x3 - y3 - z3
= x3 - x3 + y3 - y3 + z3 - z3
= 0
\(\left(x^3+y^3+z^3\right)-x^3-y^3-z^3=0.\)
Phá ngoặc ra , rồi triệt tiêu như vậy nèk :
( x3 + y3 + z3 ) - x3 - y3 - z3
= x3 + y3 + z3 - x3 - y3 - z3
= x3 - x3 + y3 - y3 + z3 - z3
= 0
a) Phân tích đa thức sau thành nhân tử: .x3+z3+y3-3xyz
b) Cho 3 số a, b, c thỏa mãn a+b+c khác 0 . Chứng minh rằng :.x3+z3+y3-3xyz/a+b+c lớn hơn hoặc bằng 0
Cho các số thực x, y , z thỏa mãn 2 điều kiện :
a) (x + y) ( y + z)( z + x) = xyz
b) (x3 + y3 ) (y3 + z3) ( x3 + z3) = x3y3z3
CMR: xyz =0
Phân tích thành nhân tử: x 3 + y 3 + z 3 – 3xyz
phân tích đa thức thành nhân tử
c) ( x + y + z)3 - x3 - y3 - z3
cho x+y+z=2 và x3+y3+z3-3xyz=0. CMR:x=y=z
Rút gọn biểu thức: M = x 3 + y 3 + z 3 - 3 x y z x 2 + y 2 + z 2 - x y - y z - x z
phân tích đa thức thành nhân tử
( x + y - z)3 - x3 - y3 + z3
11,18y2 - 12xy + 2x2
12,(x2+x)2 + 3(x2+x) + 2
13,5x2 - 10xy + 5y2 - 20z2
14,x3 - 9x + 2x2 - 18
15,x2 - 2x - 4y2 - 4y
16,a2 + 2ab + b2 - 2a - 2b + 1
17,x3 - x + 3x2 y + 3xy2 + y3 - y
18,x3 + y3 + z3 - 3xyz
19,x2 + 4x - 5
20,2x2 - 6x - 8
21,x2 - 10xy + 9y2
22,5xz - 5xy - x2 + 2xy - y2
23,(x2 + x + 1) ( x2 + x + 2) - 12
24,(x+1) (x+2) (x+3) (x+4) - 24
25,x3 + 2x2 - 2x - 12
cho x,y,z >0;xyz=1.Chứng minh rằng x3/2y+1+y3/2z+1+z3/2x+1
Phân tích đa thức thành nhân tử:(x-y)z3 + (y-z)x3+ (z-x)y3