Ta có: \(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}\)
................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)
=> \(C< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(C< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (1)
Lại có: \(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(\frac{1}{7^2}>\frac{1}{7.8}\)
..................
\(\frac{1}{100^2}>\frac{1}{100.101}\)
=> \(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{100.101}\)
=> \(C>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(C>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\) (2)
Từ (1) và (2) suy ra \(\frac{1}{6}< C< \frac{1}{4}\)(đpcm)