Đặt :
\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{100}\)
\(\Rightarrow2S=2+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{100}\)
\(\Rightarrow2S-S=\left(2+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.........+\dfrac{1}{100}\right)\)
\(\Rightarrow S=2-\dfrac{1}{100}=\dfrac{199}{100}\)
Đặt :
S=1/2+1/3+1/4+.......+1/100
⇒2S=2+1/2+1/3+1/4+.......+1/100
⇒2S−S=(2+1/2+1/3+1/4+.........+1/100)
⇒2S−S=(2+1/2+1/3+1/4+.........+1/100)
⇒S=2−1/100=199/100