\(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A< \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)
\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{2}-\frac{1}{100}=\frac{49}{100}=\left(\frac{7}{10}\right)^2\)
Ta có \(\frac{25}{36}=\left(\frac{5}{6}\right)^2\)
Ta thấy \(\frac{5}{6}=\frac{25}{30}>\frac{7}{10}=\frac{21}{30}\Rightarrow\left(\frac{7}{10}\right)^2< \left(\frac{5}{6}\right)^2\Rightarrow A< \left(\frac{7}{10}\right)^2< \left(\frac{5}{6}\right)^2=\frac{25}{36}\)