1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
cho x,y,z là các số thực dương khác 1 và xyz=1. Chứng minh rằng \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
cho các số thực x,y,z khác 1 và xyz=1.chứng minh \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
cho các số thực x,y,z khác 1 và xyz=1.chứng minh \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
CHO \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng :\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=2\left(x^4y^4+y^4z^4+z^4x^4\right)\)
GIÚP MÌNH VỚI
Cho x,y,z là các số thực khác 0 thoả mãn xyz=1. Chứng minh rằng:
\(\frac{x^2}{\left(y-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
Cho các số thực x,y,z thỏa mãn x+y+z=1 và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
(x # -y ; y #-z ; z # -x)
GT cùa BT \(\frac{x^2}{y+x}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)là...
Các bạn giúp mình nhé mình đang cần gấp lắm.. Thanks!!! (Đáp án cũng dc)
Cho x, y, z là các số dương . Chứng minh rằng :
\(a.\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge9\)
\(b.x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\)
Bài 1:
Cho các số \(0\le x,y,z\le2\)và x + y + z = 3. Tìm GTNN P = \(x^3+y^3+z^3-3\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
Bài 2:
Cho x, y, z là các số thực dương, nhỏ hơn 1 thỏa mãn xyz = (1- x)(1- y)(1- z). Chứng minh trong ba số x(1- y), y(1- z) và z(1- x) có ít nhất một số không nhỏ hơn\(\frac{1}{4}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE !!!