Cho a,b,c là các số thực thuộc đoạn [0;1]. Chứng minh rằng:
\(\sqrt{a^3b^3c^3}+\sqrt{\left(1-a^2\right)\left(1-b^2\right)\left(1-c^2\right)\left(1-abc\right)}\le1\)
Cho a,b,c là các số thực dương có tổng bằng 4 . Tìm giá trị nhỏ nhất của biểu thức:
\(P=\left|\dfrac{1}{a}-1\right|+\left|\dfrac{1}{b}-1\right|+\left|\dfrac{1}{c}-1\right|\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của biểu thức
\(P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
Cho các số thực a,b,c (\(a\ne0\)) sao cho phương trình \(ax^2+bx+c=0\)có 2 nghiệm \(\in\left[0;1\right]\). Tìm giá trị lớn nhất của biểu thức: \(P=\frac{\left(a-b\right)\left(2a-b\right)}{a\left(a-b+c\right)}\)
Cho a,b,c là 3 số thực dương thỏa mãn \(a^2+b^2+c^2\le\frac{3}{4}\)
Tìm GTNN của biểu thức \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Cho 3 điểm: A(1;-2), B(2;3), C(-1;-2)
a. Tìm tọa độ điểm D là trung điểm đoạn AC.
b. Tìm tọa độ điểm E là đỉnh thứ 4 của hình của hình bình hành có 3 điểm là A,B,C.
* Giúp mình với ạ, mình đang cần gấp ạ *
Cho 3 điểm: A(1;-2), B(2;3), C(-1;-2)
a. Tìm tọa độ điểm D là trung điểm đoạn AC.
b. Tìm tọa độ điểm E là đỉnh thứ 4 của hình của hình bình hành có 3 điểm là A,B,C.
* Giúp mình với ạ, mình đang cần gấp ạ *
Cho 3 số thực a,b,c không âm thỏa mãn \(a^2+b^2+c^2+abc=4\). GTNN và GTLN của biểu thức \(S=a^2+b^2+c^2\)là
Cho a,b,c là các số thực dương tìm giá trị lớn nhất của biểu thức \(P=\frac{8a+3b+4\left(\sqrt{ab}+\sqrt{bc}+\sqrt[3]{abc}\right)}{1+\left(a+b+c\right)^2}..\)