ta co 0^1=0^2=...=0^n=0
1^1=1^2=...=1^n=1
Ta có : \(0^1=0^3=\cdot\cdot\cdot=0^n=0\left(n\ge2\right)\)
\(1^1=1^2=\cdot\cdot\cdot=1^n=1\left(n\ge2\right)\)
Vậy bài toán đã được chứng minh
ta co 0^1=0^2=...=0^n=0
1^1=1^2=...=1^n=1
Ta có : \(0^1=0^3=\cdot\cdot\cdot=0^n=0\left(n\ge2\right)\)
\(1^1=1^2=\cdot\cdot\cdot=1^n=1\left(n\ge2\right)\)
Vậy bài toán đã được chứng minh
tìm các số nguyên dương n(n>1)thỏa mãn với mọi số nguyên dương x nguyên tố cùng nhau với n thì x^2 - 1 chia hết cho n
CMR với mọi số nguyên dương n thì \(n^3-n+2\) không phải là số chính phương.
làm đúng tick cho.
cmr 3^x+2-2^x+2+3^x-2^x chia hết cho 10 (với n là số nguyên dương) \
nhanh nha chủ nhật mình đi học
Cmr: Với mọi số nguyên dương n ta luôn có 1/1^2+1/2^2+1/3^2+...+1/n^2<5/3
Giúp mk nha, mk cần gấp
CMR nếu p là một số nguyên tố thì n^p - n chia hết cho p với mọi số nguyên dương n
Giúp mk bài này cái. Mài phải nộp ròi
Bài ?!!
a, cho a+c=2b và 2bd=c(b+d) (b và d khác 0)
CMR a/b = c/d
b, CMR: với mọi số nguyên dương n thì 3^(n+2) - 2^(n+2) + 3^(n-2n) chia hết cho 10
1 tìm các số nguyên x để biểu thức trên có giá trị là số nguyên y=(2x-3)/(x-2)
2 cmr với mọi n thuộc Z+ ta luôn có:
[ ( 5^(n+2))+(3^(n+2))-(3^n)-(5^n) ]chia hết cho24
giúp mình với nhé , mai phải nộp rồi
Chứng minh rằng với mọi số nguyên dương n thì:
5n=1^2+2^2+3^3+...+n^2=1/6n(n+1)(2n+1)
Khó quá ai giúp mk giải mk tick cho
Ai giúp mình câu này với
Chứng minh rằng với mọi số nguyên dương N thì
3^n+2 - 2^n+2 + 3^n-2^n
thì chia hết cho 10