a, ta có
P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4x}{2\sqrt{x}-x}\right):\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
P=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}}{\sqrt{x}-2}\right):\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
P=\(\frac{-3\sqrt{x}}{\sqrt{x}-2}:\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
P=\(\frac{-3\sqrt{x}}{\sqrt{x}-2}.\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
P=\(\frac{-3\sqrt{x}}{\sqrt{x}+3}\)
b, để P=-1 thì \(\frac{-3\sqrt{x}}{\sqrt{x}+3}=-1\)
\(-3\sqrt{x}=-\sqrt{x}-3\)
\(\sqrt{x}=\frac{3}{2}\)
\(\left(\sqrt{x}\right)^2=\left(\frac{3}{2}\right)^2\)
\(x=\frac{9}{4}\)
a, P={(√X/√X-2)+(4X/2√X-X}:√X+3/√-2
={(√X/√X-2)+(4X/√X[2-√X])}* √X-2/√X+3
={(√X/√X-2)+(4√X/2-√X)}* √X-2/√X+3
={(√X/√X-2)-(4√X/√X-2)}* √X-2/√X+3
=-3√X/√X-2 *√X-2/√X+3
=-3√X/√X+3
b,P=-1
<=>-3√X/√X+3=-1
<=>-3√X=-(√X+3)
<=>3√X=√X+3
<=>9X=X+6√X+9
<=>8X-6√X-9=0
<=>8X+6√X-12√X-9=0
<=>2√X(4√X+3)-3(4√X+3)=0
<=>(4√X+3)(2√X-3)=0
==>2√X-3=0
==>2√X=9
==>√X=9/2
==>X=9/4 (TM X>0,X#4)
c,Ta có P=-3√X/√X+3
=(-3√X-3+3)/√X+3
=-3+(3/√X+3)
Mà 3/√X+3 đạt GTLN=1 khi X=0
==>GTLN của P=-3+1=-2<1
Vậy p<1 (đpcm)
d,Ta có X=11-4√6 TM X>0,X#4
==> p=-3√(11-4√6)/ √(11-4√6)+3
=-3(2√6-1)/(2√6-1)+3
=-6√6+3/2√6+2
=-3(2√6+2)/2√6+2
=-3