A = 3 + 32 ....+ 330
A = (3 + 32 + 33) + (34 + 35 + 36) +...+ (328 + 329 + 330)
A = 3.( 1 + 3 + 32) + 34.( 1 + 3 + 32) +...+ 328.(1 + 3 + 32)
A = (1+3+32).( 3 + 34 + ...+ 328)
A = 13.(3 +34 +...+ 328)
13 ⋮ 13 ⇒ A = 13.(3 + 34+...+328) ⋮ 13 (đpcm)
\(A=3^1+3^2+3^3+...+3^{30}\\ \Leftrightarrow3A=3^2+3^3+3^4+...+3^{31}\\ \Leftrightarrow A-3A=3^1+3^2+3^3+...+3^{30}-3^2-3^3-3^4-...-3^{31}\\ \Leftrightarrow-2A=3-3^{31}\\ \Leftrightarrow A=\dfrac{\left(3^{31}-3\right)}{2}\)
Vì \(3^4\)có tận cùng là 1 nên \(3^{31}\)có thể viết dưới dạng \(\left(3^4\right)^7\cdot3^3\).
=> \(3^{31}\)có tận cùng là 7.
=> A có tận cùng là 1.
Mình chỉ giải được đến đây thôi. Hi vọng câu trả lời này có thể giúp bạn một chút.
Học tốt.
Cho mình cữa lại: A có tận cùng bằng 2.
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+...+3^{27}\left(3+3^2+3^3\right)\)
\(=39+3^3.39+...+3^{27}.39\)
Từ đây suy ra $A$ chia hết cho $13$ do $39$ chia hết cho $13$.