\(3^{x+1}+3^{x+2}+3^{x+3}-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.3^2+3^x.3^3-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.9+3^x.27-4.3^x=315\)
\(\Leftrightarrow3^x.\left(3+9+27-4\right)=315\)
\(\Leftrightarrow3^x.35=315\)\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài làm :
Ta có :
\(3^{x+1}+3^{x+2}+3^{x+3}-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.3^2+3^x.3^3-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.9+3^x.27-4.3^x=315\)
\(\Leftrightarrow3^x.\left(3+9+27-4\right)=315\)
\(\Leftrightarrow3^x.35=315\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)
\(\Leftrightarrow x=2\)
Vậy x=2