Gọi \(M\left(x;y\right)\) là 1 điểm bất kì trên (E) \(\Rightarrow\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in\left(E'\right)\) với (E') là ảnh của (E) qua phép tịnh tiến nói trên
\(\left\{{}\begin{matrix}x'=x+3\\y'=y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-3\\y=y'+2\end{matrix}\right.\)
Thế vào (1):
\(\dfrac{\left(x'-3\right)^2}{16}+\dfrac{\left(y'+2\right)^2}{9}=1\)
Hay pt (E') có dạng: \(\dfrac{\left(x-3\right)^2}{16}+\dfrac{\left(y+2\right)^2}{9}=1\)