cho x,y,z là các số thực dương chứng minh rằng :
\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
cho x,y,z >0 và x+y+z=1
chứng minh: \(\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(1+x\right)}+\frac{z}{x\left(1+y\right)}\ge\frac{9}{4}\)
Cho x,y,z >0. Chứng minh:
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
chứng minh rằng \(\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x,y, z >0 chứng minh \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}\)
chứng minh:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
Cho \(x,y,z>0\)
Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
cần gấp ạ, thanksss mn
Chp x, y, z > 0. Chứng minh:
\(\frac{^{x^3}}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\)
cho x,y,z >0 và x+y+z=1
chứng minh: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\)\(\ge\)\(\frac{9}{4}\)