Câu 3:
Gọi số học sinh lớp 9A là \(x\)(học sinh) (điều kiện: \(x\inℕ^∗;x< 80\)).
Số học sinh lớp 9B là \(80-x\)(học sinh).
Tổng số quyển sách lớp 9A góp được trong đợt góp sách ủng hộ là \(2x\)(quyển sách).
Tổng số quyển sách lớp 9B góp được trong đợt góp sách ủng hộ là \(3\left(80-x\right)\)(quyển sách).
Vì lớp 9A và 9B góp được 198 quyển nên ta có phương trình:
\(2x+3\left(80-x\right)=198\).
\(\Leftrightarrow2x+240-3x=198\).
\(\Leftrightarrow2x-3x=198-240\).
\(\Leftrightarrow-x=-42\).
\(\Leftrightarrow x=42\)(thỏa mãn điều kiện).
Số học sinh lớp 9B là \(80-42=38\).
Vậy lớp 9A có 42 học sinh, lớp 9B có 38 học sinh.
a) Xét \(\Delta ABD\)và \(\Delta HBI\)có:
\(\widehat{ABD}=\widehat{HBI}\)(vì BD là phân giác của \(\widehat{ABC}\)).
\(\widehat{BAD}=\widehat{BHI}\left(=90^0\right)\).
\(\Rightarrow\Delta ABD~\Delta HBI\left(g.g\right)\)(điều phải chứng minh).