a)\(\text{xét ΔABH và ΔACH có:}\)
\(\text{AB=AC(gt)}\)
\(\text{AH cạnh chung}\)
\(\text{BH=CH(gt)}\)
\(\Delta ABH=\Delta ACH\)\(\left(c.c.c\right)\)
b)
\(\Delta ABH=\Delta ACH\\ \Rightarrow\widehat{H_1}=\widehat{H_2}\)
=>AH là phân giác\(\widehat{BAC}\)
c) do \(\Delta ABH=\Delta ACH\\ \Rightarrow\widehat{H_1}=\widehat{H_2}\)
⇒\(\widehat{H_1}\)+\(\widehat{H_2}\)\(=180^o\)
mà \(\widehat{H_1}\)= \(\widehat{H_2}\)
\(\Rightarrow\widehat{H_1}=\widehat{H_2}=\dfrac{180^o}{2}=90^o\)
\(AH\)⊥\(BC\)
\(a,\left\{{}\begin{matrix}AB=AC\\BH=HC\\AH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\\ \Rightarrow\widehat{ABH}=\widehat{ACH}\\ b,\Delta AHB=\Delta AHC\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\\ \Rightarrow AH\text{ là p/g }\widehat{BAC}\\ c,\Delta AHB=\Delta AHC\\ \Rightarrow\widehat{AHB}=\widehat{AHC}\\ \text{Mà }\widehat{AHB}+\widehat{AHC}=180^0\\ \Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\\ \text{Vậy }AH\bot BC\)