Đề bài sai
Ví dụ với \(n=1\) thì \(\left(1+3\right)\left(1+12\right)=52\) ko chia hết cho 20
chứng minh với mọi số tự nhiên n thì (n+3)(n+12) chia hết cho 20
Phương pháp phản chứng :
Giả sử với mọi số tự nhiên n thì (n+3)(n+12) chia hết cho 20
ta có với n = 1 thì (n+3).(n+12) \(⋮\) 20
thay n = 1 vào biểu thức (n+3)(n+12) ta có :
(1 +3).(1+12) = 52 \(⋮̸\) 20 (trái với giả sử)
Vậy không thể chứng minh (n + 3)(n+12) \(⋮\) 20 \(\forall\) n \(\in\) N
Xem lại đề bài