\(P=2x^2+xz+6y^2+yz=2x^2+6y^2+\left(x+y\right)z\)
\(=2x^2+6y^2+\left(x+y\right)\left(3-x-y\right)\)
\(=x^2+5y^2-2xy+3x+3y\)
\(=\left(x^2-2xy+y^2\right)+3\left(x-y\right)+4y^2+6y\)
\(=\left(x-y\right)^2+3\left(x-y\right)+\dfrac{9}{4}+\left(4y^2+6y+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(=\left(x-y+\dfrac{3}{2}\right)^2+\left(2y+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Do \(\left\{{}\begin{matrix}\left(x-y+\dfrac{3}{2}\right)^2\ge0\\\left(2y+\dfrac{3}{2}\right)^2\ge0\end{matrix}\right.\) ; \(\forall x;y\)
\(\Rightarrow P\ge-\dfrac{9}{2}\)
Vậy \(P_{min}=-\dfrac{9}{2}\) khi \(\left\{{}\begin{matrix}x+y+z=3\\x-y+\dfrac{3}{2}=0\\2y+\dfrac{3}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{4}\\y=-\dfrac{3}{4}\\z=6\end{matrix}\right.\)
Giải thích các bước giải:
Ta có: x+y+z=3→z=3−x−yx+y+z=3→z=3−x−y
→P=x(2x+3−x−y)+y(6y+3−x−y)→P=x(2x+3−x−y)+y(6y+3−x−y)
→P=x2−2xy+3x+5y2+3y→P=x2−2xy+3x+5y2+3y
→P=x2−x(2y−3)+5y2+3y→P=x2−x(2y−3)+5y2+3y
→P=x2−2x⋅12(2y−3)+(12(2y−3))2+5y2+3y−(12(2y−3))2→P=x2−2x⋅12(2y−3)+(12(2y−3))2+5y2+3y−(12(2y−3))2
→P=(x−12(2y−3))2+14(16y2+24y−9)→P=(x−12(2y−3))2+14(16y2+24y−9)
→P=(x−12(2y−3))2+14(4y+3)2−92≥−92→P=(x−12(2y−3))2+14(4y+3)2−92≥−92
→GTNNP=−92→GTNNP=−92
→x−12(2y−3)=0→x−12(2y−3)=0 và 4y+3=0→x=−34,y=−944y+3=0→x=−34,y=−94
→z=3−(−34)−(−94)=6