Giúp em với
B1:Tam giác ABC vuông tại A. điểm M bất kì trong tam giác. Từ M kẻ MI;ME;MK lần lượt vuông góc với BC:AC;AB.Tìm vị trí của M để MI^2+ME^2+MK^2 min
B2:Cho tam giác ABC vuong tạo A.Trên AB,BC,CA lấy K;M;N sao cho tam giác MNK vuông cân tại K. kẻ MH vuông góc với AB=H.
1,CMR tam giác AMK=tam giác AKN
2,Xác định K;M;N để diện tích tam giác K;M;N nhỏ nhất
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH