Ta có: `f(x) -g(x)=(x^99+x^88+...+x^11+1)-(x^9+x^8+...+x+1)`
`=(x^99-x^9)+(x^88-x^8)+...+(x^11-x)`
`=x^9(x^90-1)+x^8(x^80-1)+...+x(x^10-1)`
Ta có:`x^90-1=(x^10)^9-1^9 \vdots x^10-1` (vì `a^n-b^n \vdots a-b`)
`=> x^80-1 \vdots x^10-1,....,x^10-1 \vdots x^10-1`
`=> f(x)-g(x) \vdots x^10-1`
mà `x^10-1=(x^10+x^9+x^8+...+x^2+x) - (x^9+x^8+...+x+1)=(x-1)(x^9+x^8+...+1)`
`=> x^10-1 \vdots g(x)`
`=> f(x)-g(x) \vdots g(x)`
`=> f(x) \vdots g(x)` `(đpcm)`







