Gọi thời gian vòi I chảy riêng đến khi đầy bể là \(x\) (giờ)
Trong 1 giờ vòi I chảy được \(\dfrac{1}{x}\) bể.
Đổi: 1 giờ 20 phút = \(\dfrac{4}{3}\) giờ
Mỗi giờ hai vòi chảy được là \(\dfrac{1}{\dfrac{4}{3}}=\dfrac{3}{4}\) bể, vậy mỗi giờ vòi II chảy được \(\dfrac{3}{4}-\dfrac{1}{x}\) (bể)
Đổi: 10 phút = \(\dfrac{1}{6}\) (giờ), 12 phút = \(\dfrac{1}{5}\) (giờ)
Ta có phương trình: \(\dfrac{1}{6}.\dfrac{1}{x}+\dfrac{1}{5}.\left(\dfrac{3}{4}-\dfrac{1}{x}\right)=\dfrac{2}{15}\)
\(\Rightarrow\dfrac{1}{6x}+\dfrac{3}{20}-\dfrac{1}{5x}=\dfrac{2}{15}\Rightarrow-\dfrac{1}{30x}=-\dfrac{1}{60}\Rightarrow x=2\)
Vậy vòi I chảy riêng trong 2 giờ sẽ đầy bể.
Mỗi giờ vòi II chảy được là \(\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\) bể, nên vòi II chảy riêng trong 4 giờ thì đầy bể.