Lời giải:
Gọi $O$ là giao điểm của $AC, BD$. Vì $AC\perp BD$ nên $AOB, AOD, DOC, BOC$ là tam giác vuông tại $O$.
Do đó, áp dụng định lý Pitago cho các tam giác trên thì:
$AD^2=AO^2+OD^2$
$BC^2=BO^2+OC^2$
$\Rightarrow AD^2+BC^2=OA^2+OB^2+OC^2+OD^2(1)$
$AB^2=AO^2+OB^2$
$CD^2=DO^2+CO^2$
$\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2(2)$
Từ $(1);(2)\Rightarrow AD^2+BC^2=AB^2+CD^2$
Ta có đpcm.