a, Gọi A là biến cố "Lần thứ ba và thứ tư đồng xu lật mặt sấp".
\(\left|\Omega\right|=2^4\)
\(\left|\Omega_A\right|=2.2=4\)
\(\Rightarrow P\left(A\right)=\dfrac{4}{2^4}=\dfrac{1}{4}\)
a, Gọi A là biến cố "Lần thứ ba và thứ tư đồng xu lật mặt sấp".
\(\left|\Omega\right|=2^4\)
\(\left|\Omega_A\right|=2.2=4\)
\(\Rightarrow P\left(A\right)=\dfrac{4}{2^4}=\dfrac{1}{4}\)
Gieo một đồng tiền xu cân đối và đồng chất bốn lần. Tính xác suất để cả bốn lần đều xuất hiện mặt sấp
A. 4 16
B. 2 16
C. 1 16
D. 6 16
Tung một đồng xu không đồng chất 2020 lần. Biết rằng xác suất xuất hiện mặt sấp là 0,6. Tính xác suất để mặt sấp xuất hiện đúng 1010 lần.
A. 1 2
B. (0,24)1010
C. 2 3
Cho phép thử là “gieo 10 đồng xu phân biệt” và xét sự xuất hiện mặt sấp và mặt ngửa của các đồng xu. Xác suất để có đúng một lần suất hiện mặt ngửa là
A . 5 512
B . 1 1024
C . 11 512
D . 99 1024
Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A:”ít nhất một lần xuất hiện mặt sấp”
A. P(A)=1/2.
B. P(A)=3/8.
C. P(A)=7/8.
D. P(A)=1/4.
Gieo một đồng tiền liên tiếp 3 lần.Tính xác suất của biến cố A:”có đúng 2 lần xuất hiện mặt sấp”
A. P(A)=1/2.
B. P(A)=3/8.
C. P(A)=7/8.
D. P(A)=1/4
Gieo mộtđồng tiền ba lần và quan sát sự xuất hiện mặt sấp (S), mặt ngửa (N).
a) Xây dựng không gian mẫu.
b) Xác định các biến cố:
A. "Lần gieo đầu xuất hiện mặt sấp";
B. "Ba lần xuất hiện các mặt như nhau";
C. "Đúng hai lần xuất hiện mặt sấp";
D. "Ít nhất một lần xuất hiện mặt sấp".
Gieo ngẫu nhiên ba đồng xu phân biệt một lần. Kí hiệu S, N lần lượt chỉ đồng xu lật sấp, lật ngửa
b) Xác định biến cố C:”có ít nhất hai đồng tiền xuất hiện mặt ngửa”
A. C={NNS,NSN,SNN}
B. C={NNS,NSN,SNN,NNN}
C. C={N,N,S}
D. C={N,N,N}
Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là:
Gieo một đồng tiền liên tiếp cho đến khi xuất hiện mặt sấp hoặc cả 4 lần ngửa thì dừng lại.
a. Mô tả không gian mẫu.
b. Xác định các biến cố.
A: "Số lần gieo không vượt quá 3"
B: "Số lần gieo là 4"