Giải hệ phương trình :
\(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}}\)
Giải hệ phương trình (ẩn số x,y,z):\(\hept{\begin{cases}x+y+z=6\left(1\right)\\x^2+y^2+z^2=18\left(2\right)\\\sqrt{x}+\sqrt{y}+\sqrt{z}=4\left(3\right)\end{cases}.}\)
: Tìm cặp giá trị (x;y) thỏa mãn \(\hept{\begin{cases}x^4+2y^3-x=-\frac{1}{4}+3\sqrt{3}\\y^4+2x^3-y=-\frac{1}{4}-3\sqrt{3}\end{cases}.}\)
\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}_{ }_{ }_{ }^2^2^{ }\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\frac{ }{ }\frac{ }{ }\frac{ }{ }\frac{ }{ }\sqrt[]{}\sqrt{ }}\)
a) Gọi 3 số cần tìm lần lượt là x;y;z. Ta có:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{310}{10}=31\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=31\\\frac{y}{3}=31\\\frac{z}{5}=31\end{cases}}\)
\(\hept{\begin{cases}x=62\\y=93\\z=155\end{cases}}\)
Tìm 2 số x; y biết rằng:
a)\(\hept{\begin{cases}\frac{x}{4}=\frac{y}{-5}\\-3x+2y=55\end{cases}}\).
b)\(\hept{\begin{cases}\frac{x}{y}=\frac{-7}{4}\\4x-5y=72\end{cases}}\).
c)\(\hept{\begin{cases}\frac{x}{-3}=\frac{y}{8}\\x^2-y^2=\frac{-44}{5}\end{cases}}\).
d)\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-3}\\3x^3+y^3=\frac{64}{9}\end{cases}}\).
Gởi bn Trân
a. Nếu x \(\ge\)0 suy ra x =1 ( thõa mãn)
Nếu x < 0 suy ra x = -3 ( thõa mãn)
b. \(\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\Rightarrow\hept{\begin{cases}y=1\\x-3=6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-1\\x-3=-6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=2\\x-3=3\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-3\\x-3=-2\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=6\\x-3=1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-6\\x-3=-1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-2\\x-3=-3\end{cases}}\)
; hoặc \(\hept{\begin{cases}y=3\\x-3=2\end{cases}}\)
Từ đó ta có các cặp (x;y) là (9;1); (-3,-1); (6,2); (0,2); (5,3); (1,-3); (4,6); (2,-6)
c. Từ 2x = 3y và 5x = 7z biến đổi về \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{89}=\frac{5z}{50}=\frac{3x-7y+5z}{63-89+50}=\frac{30}{15}=\frac{2}{1}=2\)
\(\rightarrow\)x=42; y=28; z=20
b) Gọi 3 số cần tìm lần lượt là: x,y,z. Vì x,y,z tỉ lệ nghịch với 2;3;5 nên
\(2x=3y=5z\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{310}{\frac{31}{30}}=300\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=300\\\frac{y}{\frac{1}{3}}=300\\\frac{z}{\frac{1}{5}}=300\end{cases}}\)
\(\hept{\begin{cases}x=\frac{1}{2}.300\\y=\frac{1}{3}.300\\z=\frac{1}{5}.300\end{cases}}\)
\(\hept{\begin{cases}x=150\\y=100\\z=60\end{cases}}\)
Tìm x,y , biết :
a,\(\hept{\begin{cases}x\left(x+y\right)=\frac{1}{48}\\y\left(x+y\right)=\frac{1}{24}\end{cases}}\)
b,\(\hept{\begin{cases}x\left(x-y\right)=\frac{3}{10}\\y\left(x+y\right)=-\frac{3}{10}\end{cases}}\)