P=\(\left(\frac{1}{\sqrt{x}}-\frac{2}{x+\sqrt{x}}\right)\div\frac{1}{\sqrt{x}+1}\)
=>P=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}\cdot\sqrt{x}+1}-\frac{2}{\sqrt{x}.\sqrt{x+1}}\right)\times\frac{\sqrt{x}+1}{1}\)
=>P=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)
b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
ta có P=\(\frac{x^2}{x\sqrt{y+3}}+\frac{y^2}{y\sqrt{z+3}}+\frac{z^2}{z\sqrt{x+3}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y+3}+y\sqrt{z+3}+z\sqrt{x+3}}\)
mà \(\left(x\sqrt{y+3}+...\right)^2\le\left(x+y+z\right)\left(xy+yz+zx+3x+3y+3z\right)\le3\left(9+3\right)=36\) ( vì xy+yz+zx<=3)
=>\(x\sqrt{y+3}+...\le6\Rightarrow P\ge\frac{9}{6}=\frac{3}{2}\)
dấu = xảy ra <=> x=y=z=1
Điều kiện \(x\ge1\)Aps dụng BĐT AM-GM ta có
\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)
\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)
\(\Rightarrow\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\le x\)Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=1\\x-1=\frac{1}{x}\end{cases}\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}}\)
ta có P=\(\frac{x^2}{\sqrt{xy+3x}}+...\ge\frac{\left(x+y+z\right)^2}{\sqrt{xy+3x}+...}=\frac{9}{\sqrt{xy+3x}+...}\)
mà \(\left(\sqrt{xy+3x}+...\right)^2\le3\left(xy+...+3x+...\right)\le3\left(3+9\right)=36\Rightarrow\sqrt{xy+3x}+...\le6\)
=>\(P\ge\frac{3}{2}\)
Đã bảo là liên hợp là ra mà đ tin hả Zũ ? -_-
\(x^3+\sqrt{\left(x+1\right)^3}=9x+8\left(x\ge-1\right)\)
\(\Leftrightarrow\left(x^3+1\right)+\left(x+1\right)\sqrt{x+1}-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+\sqrt{x+1}-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(Tm\right)\\x^2-x+\sqrt{x+1}-8=0\left(1\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)+\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2+\frac{1}{\sqrt{x+1}+2}\right)=0\)
Vì x > -1 nên dễ thấy cái ngoặc to > 0
Do đó x = 3
Vậy có 2 nghiệm -1 và 3 (nghiệm thứ 3 nào nữa nhỉ ? -,-'' )
chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhé
bài 1)
cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉ
bài 2 )
cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)
chú ý chị chi em viết cho chị mà chị phải trả công em chứ còn thùy linh là khác
bài 3)
cho a,b,c là các số hữ tỉ thỏa mãn ab+bc+ca=1. tính \(C=a.\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+...\) (n0s theo quy luật chi nhé tớ biết đầu cậu thông minh nên tớ viết thế thôi)
bài 4)
cho a,b,c >0 thỏa mãn abc=1. tính \(A=\frac{\sqrt{a}}{1+\sqrt{a}+\sqrt{ab}}+...\) (cái này cũng theo quy luật)
bài 5)
giải các phương trình vô tỉ sau
1,2 không phải làm nên không chép nữa
3) \(\sqrt{x^2-10x+25}-3x=1\)
4) \(x-\frac{1}{2}\sqrt{x^2-8x+16}=2\)
5) \(\sqrt{x^2-16}+\sqrt{x^2-5x+4}=0\)
6) chú ý đây viết mỏi tay luôn nhớ mai đãi bánh mì với kem đấy
XIN LỖI NHÉ TREO MÁY NÊN KHÔNG ĐEẺ Ý ĐỀ ĐÂY
4) \(x^2-5x+4=\left(2x-1\right)\sqrt{x^2-3x+4}\)
5) \(2\sqrt{\left(x+2\right)^3}=6x+3x^2-x^3\)
6) đề là cái link tớ gửi cho cậu
7) \(x=\sqrt{x+2}\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
đến đây sthôi tí gửi tiếp cho giờ học đã
tính hộ chúa con cuối với " ko dùng coccoc math " 100% sai " bạn nào có máy tính casio bấm hộ "
\(x^2+3=x+8+2x-x^2+2x\sqrt{8+2x-x^2}.\)
\(2x^2-3x-5=2x\sqrt{8+2x-x^2}\)
\(4x^4-12x^3-11x^2+30x+25=-4x^4+8x^3+32x^2\)
\(\left(X+1\right)^2\left(2x-5\right)^2+4x^4-8x^3-32x^2=0\)
\(\left(X-1\right)\left(8x^3-12x^2-55x-25\right)=0\)
\(8x^3-12x^2-55x-25=0\)
\(\Delta=144+1320=1464>0\)
\(k=\frac{47520+3456+43200}{2\sqrt{1464^3}}=\frac{94176}{2\sqrt{1464^3}}=\frac{47088}{\sqrt{1464^3}}< 1\)
\(x1=\frac{2\sqrt{1464}cos\left(arccos\left(\frac{47088}{\sqrt{1464^3}}\right)-\frac{2pi}{3}\right)+12}{24}=?\)
x2=...
x3=......