\(x^3+5x^2+3x-9=0\)
\(\Leftrightarrow x^3-x^2+6x^2-6x+9x-9=0\)
\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-3\right\}\)
Giải phương trình : \(x^3+5x^2+3x-9=0\)
\(\leftrightarrow\left(x^3+3x^2\right)+\left(2x^2+6x\right)-\left(3x+9\right)=0\)
\(\leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=0\)
\(\leftrightarrow\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\leftrightarrow\left(x+3\right)\left[\left(x^2-x\right)+\left(3x-3\right)\right]=0\)
\(\leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+3\left(x-1\right)\right]=0\)
\(\leftrightarrow\left(x+3\right)\left(x+3\right)\left(x-1\right)=0\)
\(\leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\)
\(\leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
Vậy phương trình có nghiệm là x=1,x=-3
Chúc bn hok tốt nhưng nhớ cho mik nghen!! : 3