giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
Áp dụng nội suy niu tơn để giải pt sau
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)
GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)
Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))
Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm
Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj
Vậy x = 1
B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)
ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)
Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)
\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)
\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)
Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)
Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)
Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)
\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)
\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)
\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)
\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)
\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)
\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)
Đặt \(\(\frac{1}{x}=a\)\)
\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)
Tự làm nốt , mai ra lớp t giảng lại cho ...
Giải phương trình:
\(\frac{2\left(x-\sqrt{3}\right)\left(x-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
Rút gọn :
a) \(\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\) (với \(\frac{1}{4}\le x\le\frac{1}{2}\)
b)\(\frac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\frac{1}{\sqrt{x-1}}\right)\)
\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-3}{x-\sqrt{x}-2}\right):\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{2}{\sqrt{x}-2}\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x+\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-\sqrt{x}+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-x+3+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+2\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+2}\)
\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\) ĐKXĐ: ...
\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)
\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
giải pt ( đặt ẩn phụ)
1. \(x^2+\sqrt{x+2012}=2012\)
2.\(4\cdot\sqrt{\frac{3x+1}{x-1}}+\sqrt{\frac{x-1}{3x+1}}=4\)
3. \(\left(x-3\right)\cdot\left(x+1\right)+4\cdot\left(x-3\right)\cdot\sqrt{\frac{x+1}{x-3}}+3=0\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{2}{2\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\)
=\(\frac{\left(x+1\right).\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x-2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x+2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+4x+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(x+4\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
LƯU Ý: CAP NÀY CHỈ LÀ CAP NHÁP