\(\sqrt{x^2-4x+4}=3\)
`<=> x^2 -4x +4 = 9`
`<=> x^2 -4x +4 -9 =0`
`<=> x^2 -4x -5 =0`
`<=> (x+1)(x-5)=0`
`<=>` \(\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Vậy `S={-1;5}`
`\sqrt{x^2-4x+4}=3`
`<=>\sqrt{(x-2)^2}=3`
`<=>|x-2|=3`
`<=>` $\left[\begin{matrix} x-2=3\\ x-2=-3\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x=5\\ x=-1\end{matrix}\right.$
Vậy `S={-1;5}`