Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tang Khanh Hung

Giai pt:\(\sqrt{x-2}+\sqrt{y+2003}+\sqrt{z-2004}=\frac{1}{2}\left(x+y+z\right)\)

Khanh Nguyễn Ngọc
11 tháng 9 2020 lúc 22:34

\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)

\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)

Khách vãng lai đã xóa
Trí Tiên亗
11 tháng 9 2020 lúc 22:36

\(ĐK:x\ge2,y\ge-2003,z\ge2004\)

Pt đã cho tương đương :

\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tiểu thư họ Vũ
Xem chi tiết
Yuri Nguyễn
Xem chi tiết
Nguyễn Võ Anh Nguyên
Xem chi tiết
nguyễn đình thành
Xem chi tiết
Anna Vũ
Xem chi tiết
laughtpee
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
QUan
Xem chi tiết
Nguyễn Trà My
Xem chi tiết