\(\sqrt{9x^2}=2x+1\\ \Leftrightarrow\sqrt{\left(3x\right)^2}=2x+1\\ \Leftrightarrow\left|3x\right|=2x+1\)
th1 :\(3x\ge0\Leftrightarrow x\ge0\Rightarrow\left|3x\right|=3x\)
\(\Rightarrow3x=2x+1\\ \Leftrightarrow3x-2x=1\\ \Leftrightarrow x=1\)
th2 : \(3x< 0\Leftrightarrow x< 0\Rightarrow\left|3x\right|=-3x\)
\(\Rightarrow-3x=2x+1\\ \Leftrightarrow-3x-2x=1\\ \Leftrightarrow-5x=1\\ \Leftrightarrow x=-\dfrac{1}{5}\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\(\sqrt{x^2}=7\\ \Leftrightarrow\left|x\right|=7\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
`sqrt{9x^2} =2x+1`
`<=>sqrt{(3x)^2} = 2x+1`
`<=> |3x| = 2x+1`
\(\Leftrightarrow\left[{}\begin{matrix}3x=2x+1\left(đk:x\ge0\right)\\-3x=2x+1\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2x=1\\-3x-2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{1}{5}\left(tm\right)\end{matrix}\right.\)
`sqrt{x^4} = 7`
`<=> x^2 = 7`
`<=> x = +- sqrt{7}`
`sqrt{x^2} = |-8|`
`<=> x = |-8|`
`=>x=8`
`sqrt{x^4} =9`
`=>x^2 = 9`
`=> x=+- 3`
`sqrt{x^2} = 7`
`=>|x| =7`
`=> x = +-7`
(1)<=> 3x=2x+1<=>x=1
(2) <=>x^2=7<=>x=\(\sqrt{7};x=-\sqrt{7}\)
(3)<=>x=7
(4)<=>x=8
(5)<=>x^2=9<=>x=3;x=-3
(1)<=> 3x=2x+1<=>x=1
(2) <=>x^2=7<=>x=
(3)<=>x=7
(4)<=>x=8
(5)<=>x^2=9<=>x=3;x=-3