Giải pt
\(\frac{1}{x}+\frac{1}{\sqrt[4]{2-x^4}}=2\left(x\inℝ\right)\)
Cứu vs
2. Giải PT:
a) \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
Giải các hệ PT:
a) \(\frac{1}{2x-y}+x+3y=\frac{3}{2}\) và \(\frac{4}{2x-y}-5\left(x+3y\right)=-3\)
b) \(3\left(\sqrt{x-1}\right)-\frac{4}{\sqrt{y}-1}=-1\)và \(2\left(\sqrt{x-1}\right)+\frac{3}{\sqrt{y}-1}=5\)
c) \(\frac{1}{x+y}+\sqrt{y-2}=3\)và \(\frac{-2}{x+y}+5\sqrt{y-2}=1\)
d) \(\frac{2}{\sqrt{x}-3}+\frac{1}{\sqrt{y+1}}=\frac{13}{20}\)và \(\frac{5}{\sqrt{x}-3}-\frac{2}{\sqrt{y+1}}=\frac{1}{2}\)
tìm x\(\in\)Z để \(-\frac{20\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}⋮20\)
1/Tính:
a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
b)\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right).\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
2/Giải phương trình:
a)\(\sqrt{x^2-2x+1}=7\)
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
Giải PT
\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
\(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
\(\sqrt{3x^2-4x+3}=1-2x\)
\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
Giải pt sau:
\(A=\left(\frac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\frac{3}{x^3-\sqrt{27}}\right)\left(\frac{x}{\sqrt{3}}+\frac{\sqrt{3}}{x}+1\right)\)
Giải pt
\(\frac{1}{7x+1}+\frac{1}{\sqrt{\left(7x+11\right)\left(9-7x\right)}}=\frac{7}{24}\left(x\inℝ\right)\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1