để ý rằng nếu x là nghiệm thì x\(\ne\)0 nên ta chia cả tử số và mẫu số của vế trái cho x thì ta thu được \(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)đặt \(t=x+\frac{2}{x}+2\)thì phương trình trở thành
\(\frac{12}{t+2}-\frac{3}{t}=1\Leftrightarrow12t-3t-6=t^2+2t\Leftrightarrow t^2-7t+6=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=6\end{cases}}\)
với t=1 ta có \(x+\frac{2}{x}+2=1\Leftrightarrow t^2+t+2=0\)(vô nghiệm)
với t=6 ta có \(x+\frac{x}{2}+2=6\Leftrightarrow x^2-4x+2=0\Leftrightarrow x=2\pm\sqrt{2}\)