Bài này rất đơn giản
\(y^2-2y+3=\frac{6}{x^2+2x+4}\Leftrightarrow\left(y^2-2y+1\right)+2-\frac{6}{x^2+2x+4}=0\)
\(\Leftrightarrow\left(y-1\right)^2+\frac{2\left(x^2+2x+4\right)-6}{x^2+2x+4}=0\Leftrightarrow\left(y-1\right)^2+\frac{2\left(x^2+2x+1\right)}{x^2+2x+4}=0\)
\(\Leftrightarrow\left(y-1\right)^2+\frac{2\left(x+1\right)^2}{x^2+2x+4}=0\)
Ta có: \(\left(y-1\right)^2\ge0;\frac{2\left(x+1\right)^2}{x^2+2x+4}\ge0\) với mọi x và y
dấu "=" xảy ra khi y=1; x=-1
Vậy (x,y)=(1,-1)
Tick mình nha