Ta có : \(x^4+2x^3+8x^2+10x+15=0\)
\(\Leftrightarrow\left(x^4+2x^3+3x^2\right)+\left(5x^2+10x+15\right)=0\)
\(\Leftrightarrow x^2\left(x^2+2x+3\right)+5\left(x^2+2x+5\right)=0\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2x+3=0\\x^2+5=0\end{array}\right.\)
Ta có : \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\)
=> PT này vô nghiệm.
\(x^2+5>0\) => PT này vô nghiệm.
Vậy phương trình đã cho vô nghiệm.