Bài 1 Giai pt
\(a,2x^2+2x+1=\sqrt{4x+1}\)
\(b,x^2-6x+26=6\sqrt{2x+1}\)
\(c,4\sqrt{x+1}=x^2-5x+4\)
\(d,x^2+2015x-2014=2\sqrt{2017x-2016}\)
\(e,\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(f,2x^2-5x+5=\sqrt{5x-1}\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Giai pt \(a,4\sqrt{x+1}=x^2+5x+4\)
\(b,\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(c,2x^2-5x+5=\sqrt{5x-1}\)
Giải phương trình vô tỉ sau:
a) \(\sqrt{4x-y^2}-\sqrt{y+2}=\sqrt{4x^2+y}\)
b)\(\sqrt{5-x}+\sqrt{x-1}=-x^2+2x+1\)
c)\(\sqrt{x^2+x+1}+\sqrt{x-x^2+1}=x^2-x+2\)
d)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
(chú ý làm theo pp đối lập)
giai he pt pt(1): x2(y+3)(x+2)-\(\sqrt{2x+3}\)=0 ;pt(2): 4x -4\(\sqrt{2x+3}\) +x3\(\sqrt{\left(y+3\right)^3}\) +9=0
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
a) giải hệ pt: \(\hept{\begin{cases}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{cases}}\)
b) giải hệ pt: \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\)
Giải pt, hệ pt
a\(\left(\sqrt{x+6}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+4x-12}\right)\)=8
b \(\hept{\begin{cases}x^2+y^2+x+y=18\\x^2+x-y=10\end{cases}}\)
c\(\hept{\begin{cases}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{cases}}\)