\(x^2-22.x-110=0\)
<=>\(x^2-22.x=110\)
<=> \(x^2-22.x+11^2=110+11^2\)( cộng cả hai vế với \(11^2\)để được hằng đẳng thức)
<=>\(\left(x-11\right)^2=231\)
<=>\(\hept{\begin{cases}x-11=\sqrt{231}\\x-11=-\sqrt{231}\end{cases}}\)
<=>\(\hept{\begin{cases}x=11+\sqrt{231}\\x=11-\sqrt{231}\end{cases}}\)
vậy phương trình có hai nghiệm \(x_1=11+\sqrt{231};x_2=11-\sqrt{231}\)