\(\frac{\left(x-3\right)}{x^2+4x+9}+2+\frac{x^2+4x+9}{x-3}=0\)
\(x^2+4x+9=\left(x+2\right)^2+5\ge5\)
x>3 hiển nhiên vô nghiệm
xét x<3
\(\frac{!\left(x-3\right)!}{x^2+4x+9}+\frac{x^2+4x+9}{!x-3!}\ge2\)
vậy pt chỉ nghiệm
khi \(\frac{!\left(x-3\right)!}{x^2+4x+9}=\frac{x^2+4x+9}{!x-3!}\Leftrightarrow x^2+4x+9=!x-3!\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\)
25-24=1
=>
x=-3 loại
x=-2 nhận
Đk:....
Đặt \(\hept{\begin{cases}a=x-3\\b=x^2+4x+9\end{cases}}\) pt trở thành
\(\frac{a}{b}+2+\frac{b}{a}=0\)\(\Leftrightarrow\frac{a^2}{ab}+\frac{2ab}{ab}+\frac{b^2}{ab}=0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{ab}=0\)\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a=-b\)\(\Leftrightarrow x-3=-\left(x^2+4x+9\right)\)
\(\Leftrightarrow x-3=-x^2-4x-9\)\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)