\(\left(\sqrt{x^2+2x}+\sqrt{2x-1}\right)^2=3x^2+4x+1\)
\(x^2+4x-1+2\sqrt{2x^3+3x^2-2x}=3x^2+4x+1\)
\(2\sqrt{2x^3+3x^2-2x}=2x^2+2\)
\(\sqrt{2x^3+3x^2-2x}=x^2+1\)
\(2x^3+3x^2-2x=x^4+2x^2+1\)
\(x^4-2x^3-x^2+2x+1=0\)
pt đối xứng bậc 4 tự làm được chưa?
\(\left(\sqrt{x^2+2x}+\sqrt{2x+1}\right)^2=3x^2+4x+1\)
\(x^2+4x-1+2\sqrt{2x^3+3x^2-2x}=3x^2+4x+1\)
\(\sqrt{2x^3+3x^2+2x}=x^2+1\)
\(2x^3+3x^2+2x=x^4+2x^2+1\)
\(x^4-2x^3-x^2+2x+1=0\)
\(\left(x^2-x-1\right)^2=0\)
\(x^2-x-1=0\)
\(x^2-x+\frac{1}{4}-\frac{5}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(x-\frac{1}{2}=\frac{\sqrt{5}}{2}\)
\(x=\frac{1+\sqrt{5}}{2}\)
lên thánh nhé