ĐK: \(x\ge-1\)
\(\frac{pt\Leftrightarrow\sqrt{x+1}\sqrt{x^2-x+1}}{\sqrt{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+3}}\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+3}}=1\text{ (do }\sqrt{x^2-x+1}>0\text{)}\)
\(\Leftrightarrow...\)