Đặt cái BT thứ nhất là √a thì cái BT sau là √(1/a),khi đó phương trình viết lại(a>0)
√a+√(1/a)=7/4;Bình phương 2 vế suy ra:
a+1/a+2=49/16>>>a+1/a=17/16>>>a^2+1=17/16a>>>16A^2+16-17=0(pt vô nghiệm)
Vậy phương trình vô nghiệm
Đặt cái BT thứ nhất là √a thì cái BT sau là √(1/a),khi đó phương trình viết lại(a>0)
√a+√(1/a)=7/4;Bình phương 2 vế suy ra:
a+1/a+2=49/16>>>a+1/a=17/16>>>a^2+1=17/16a>>>16A^2+16-17=0(pt vô nghiệm)
Vậy phương trình vô nghiệm
giải pt \(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}x+\frac{2}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}x\)
Bài 1:
a, A=\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b, B= \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{\left(\sqrt{2}+1\right)^2}\)
Bài 2: Giải pt
a,\(\frac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\frac{2}{7}\)
b, \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
Bài 3:
A=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
Giải hệ PT: \(\hept{\begin{cases}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}=2\sqrt{7}\\\frac{6}{x+y}+\frac{1}{xy}=-1\end{cases}}\)
Giải hệ pt:
1.\(\sqrt[4]{x}\left(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=2\)
2.\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=1\)
Giải pt \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
GIÚP MK ĐI!!!!!!!!
bài 1 cho biểu thức với biến số thực A=\(\frac{x-2}{x^3-x^2-x-2}\)
a) tìm điều kiện của x để A có nghĩa
b) với giá trị nào của x thì A đạt dtlv. hạy chỉ ra gtln đó
bài 2 giải các hệ pt sau: a)\(\hept{\begin{cases}x-\sqrt{y+\sqrt{y-\frac{1}{4}}}=\frac{1}{2}\\y-\sqrt{x+\sqrt{x-\frac{1}{4}}}=\frac{1}{2}\end{cases}}\)
b) \(\hept{\begin{cases}x+y+z=6\\xy+yz-zx=-1\\x^2+y^2+z^2=14\end{cases}}\)
giải theo pp giải hệ pt đối xứng loại 1,2
bài 3 giải pt
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
Giải hệ pt
\(\sqrt[4]{x}\left(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)\)=2\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)\)=1Giải hệ pt
\(\sqrt[4]{x}\left(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=2\)\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=1\)Giải hệ pt
\(\sqrt[4]{x}\left(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=2\)
\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=1\)