ĐK: \(x\ge\frac{2}{3}\)
\(pt\Leftrightarrow5\sqrt{4x+1}-5\sqrt{3x-2}=4x+1-\left(3x-2\right)\)
Đặt \(a=\sqrt{4x+1};\text{ }b=\sqrt{3x-2}\text{ }\left(a;\text{ }b\ge0\right)\)
Pt trở thành: \(5a-5b=a^2-b^2\Leftrightarrow\left(a-b\right)\left(a+b\right)-5\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-5\right)=0\)\(\Leftrightarrow a=b\text{ hoặc }a+b=5\)
\(+\text{Nếu }a=b\text{ thì }\sqrt{4x+1}=\sqrt{3x-2}\Leftrightarrow4x+1=3x-2\Leftrightarrow x=-3\text{ }\left(\text{loại}\right)\)
\(+\text{Nếu }a+b=5\text{ thì }\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow4x+1+3x-2+2\sqrt{\left(4x+1\right)\left(3x-2\right)}=25\)
\(\Leftrightarrow2\sqrt{12x^2-5x-2}=26-7x\)
\(\Leftrightarrow4\left(12x^2-5x-2\right)=\left(26-7x\right)^2\text{ và }26-7x\ge0\)
\(\Leftrightarrow x^2-344x+684=0\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow\left(x-342\right)\left(x-2\right)=0\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow x=342\text{ hoặc }x=2\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow x=2\)
\(\text{Kết luận: }x=2.\)