a3=2-x
b2 = x-1
a3 + b2 = 1 ; b - a = 5=> b = a+5
=> a3 + a2 + 10a +24 =0
a = -2
=> -8 =2 -x => x =10
a3=2-x
b2 = x-1
a3 + b2 = 1 ; b - a = 5=> b = a+5
=> a3 + a2 + 10a +24 =0
a = -2
=> -8 =2 -x => x =10
giải các pt sau
\(\sqrt{x+3}=5-\sqrt{x-2}\)
\(\sqrt{x^2-x-1}=1-x\)
Giải các PT sau :
1, \(x^2+x+3-3\sqrt{x^2+x+1}=0\)
2, \(\sqrt{x+5}-\sqrt{x}=\sqrt{x-3}\)
1. Giải pt:
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
2. Giải pt:
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
GIẢI PT
\(\sqrt{x^2+10x+25}=4\)
\(\sqrt{x-2}+3=5\)
\(\sqrt{x^2-x+4}-x^2+x-2=0\)
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{1}{3}\)
giải pt sau: x + (x+1)\(\sqrt{x+3}\)=5
giải các pt sau
\(\frac{3}{\sqrt{x}+15}=\frac{\sqrt{x}}{5}\)
\(\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{9}{2}\)
giải pt sau
a)\(\sqrt{x^2-6x+9}=3\)
b)\(\sqrt{x+2\sqrt{x-1}}=2\)
c)\(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\)
d)\(\sqrt{x-4}+\sqrt{x+1}=5\)
Help
giải pt bậc 2 bằng công thức nghiệm
\(\sqrt{3}x^2+2\sqrt{5}x-3\sqrt{3}=-x^2-2\sqrt{3}x+2\sqrt{5}+1\)
C1,Giải hệ \(\hept{\begin{cases}\sqrt[4]{x^3}+\sqrt[5]{y^3}=35\\\sqrt[4]{x}+\sqrt[5]{y}=5\end{cases}}\)
C2, Giải pt \(x\sqrt{x}+\left(1-x\right)\sqrt{1-x}=\sqrt{x}+2\sqrt{1-x}\)