\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
Đến đây dễ rồi bạn tự làm tiếp nhé
làm tiếp bài của bạn Pham Trung Thanh
Ta thấy : \(\left(2x-3y+8\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
Cộng theo vế ta được : \(\left(2x-3y+8\right)^2+\left(y-4\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}< =>\hept{\begin{cases}8-3y+8=0\\x=4\end{cases}}}\)
\(< =>\hept{\begin{cases}x=4\\16=3y< =>y=\frac{16}{3}\left(ktm\right)\end{cases}}\)
Vậy pt vô nghiệm nguyên