Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hyun mau

GIẢI PT: 

\(\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)x+\frac{1}{4.5^{99}.x}=\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}\)

Trần Thị Loan
24 tháng 3 2015 lúc 17:11

Đặt \(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

=>  \(\frac{1}{5}.A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}+\frac{1}{5^{100}}\)

=> \(A-\frac{1}{5}A=\frac{4}{5}.A=1-\frac{1}{5^{100}}\Rightarrow\frac{4}{5}.A=\frac{5^{100}-1}{5^{100}}\Rightarrow A=\frac{5^{100}-1}{4.5^{99}}\)

Tính \(\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}=\frac{1}{25}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{380}\right)\)

\(=\frac{1}{25}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)=\frac{1}{25}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)\(=\frac{1}{25}.\left(1-\frac{1}{20}\right)=\frac{19}{20.25}=\frac{19}{4.5^3}\)

vậy phương trình đã cho trở thành:

\(\frac{5^{100}-1}{4.5^{99}}.x+\frac{1}{4.5^{99}.x}=\frac{19}{4.5^3}\Rightarrow\left(5^{100}-1\right)x^2+1=19.5^{96}.x\)

\(\left(5^{100}-1\right)x^2-19.5^{96}.x+1=0\)

bạn kiểm tra lại đề lần nữa, phương trình này có nghiệm  rất lẻ , nghiệm lớn

 


Các câu hỏi tương tự
Trần Anh Đại
Xem chi tiết
Nguyễn Quỳnh Mai
Xem chi tiết
Khải Nhi Vương
Xem chi tiết
Nguyễn Hải Anh Jmg
Xem chi tiết
Trà My Nguyễn Thị
Xem chi tiết
린 린
Xem chi tiết
Ong Woojin
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Hồng Duyên
Xem chi tiết