giải pt \(cos2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{5}-x\right)=\frac{5}{2}\)
giải pt \(cos2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{3}-x\right)=\frac{5}{2}\)
giải pt
a) \(\sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
b) \(3tan^3x-tanx+\frac{3\left(1+sinx\right)}{cos^2x}-8cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=0\)
RÚT GỌN:
1. \(4\sin xsin\left(x+\frac{\pi}{2}\right)sin\left(2x+\frac{\pi}{2}\right)\)
2 \(1-8\sin^2x\cos^2x\)
3 \(\frac{2}{\left(1-\tan a\right)\left(1+\cot a\right)}\)
4 \(\left(1-\tan^2a\right)\cot a\)
5 \(\cos^2\frac{\pi}{24}-\cos^4\frac{\pi}{24}\)
Chứng minh rằng
\(\tan\left(x\right)\tan\left(x+\frac{\pi}{3}\right)+\tan\left(x+\frac{\pi}{3}\right)\tan\left(x+\frac{2\pi}{3}\right)+\tan\left(x\right)\tan\left(x+\frac{2\pi}{3}\right)=3\)
Cho \(\sin\alpha+\cos\alpha=\frac{\sqrt{6}}{2},a\in\left(0;\frac{\pi}{4}\right)\)
Tính giá trị biểu thức: \(P=\cos\left(\alpha+\frac{\pi}{4}\right)+\sqrt{2\left(1-\sin\alpha\cos\alpha+\sin\alpha-\cos\alpha\right)}\)
Giải phương trình lượng giác: \(\cos2x+\cos\left(x+\frac{\pi}{2}\right)=1\)
Help me!!!!~~
giải pt
\(x.\left(\frac{5-x}{x+1}\right)\left(x+\frac{5-x}{x+1}\right)=6\)
Giải hệ PT:
\(\hept{\begin{cases}\left(x+y\right)\left(1+\frac{1}{xy}\right)=5\\\left(x^2+y^2\right)\left(1+\frac{1}{x^2y^2}\right)=9\end{cases}}\)